If it's not what You are looking for type in the equation solver your own equation and let us solve it.
19-1/x^2=0
Domain of the equation: x^2!=0We multiply all the terms by the denominator
x^2!=0/
x^2!=√0
x!=0
x∈R
19*x^2-1=0
We add all the numbers together, and all the variables
19x^2-1=0
a = 19; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·19·(-1)
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{19}}{2*19}=\frac{0-2\sqrt{19}}{38} =-\frac{2\sqrt{19}}{38} =-\frac{\sqrt{19}}{19} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{19}}{2*19}=\frac{0+2\sqrt{19}}{38} =\frac{2\sqrt{19}}{38} =\frac{\sqrt{19}}{19} $
| t/3+9=11 | | 16-2p=2 | | v+4.7=7.52 | | 4x^2=116 | | s/4+8=11 | | x/5-3.2=11.3 | | 1/2–1/3(6x–3)=–13/2 | | 7w-19=61 | | 2.472y^2×(0.5y)^2/3=105 | | -35=4a-9a | | 2.472y^2(0.5y)^2/3=105 | | u-4.95=8.7 | | 1/3x+8=-12 | | y/4+-41=-50 | | 81=12x-17 | | 8x^2-38x+17=0 | | 2x+6=3x-7 | | -111+7x=-10+144 | | y/7-6=-3 | | 8–5y=-3y–31 | | Y=-2x2-7x+15 | | x/x-2=2+x/x-2 | | 4+243.14+2=y | | 4x-7x+3x+5x-10=25 | | -8x^2-4x+8=0 | | 2q+3q-6=10q-5q+16 | | 4x+8x=10 | | -50=x/7 | | j/2+8=9 | | 3x/x-5=15/x-5+6 | | 2/3(9x-6)=-4x+10 | | -29+11x=31+6x |